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The hippocampus (Figure 1A) is a 
brain region critical to spatial learn-
ing and memory. The hippocam-
pal formation contains a highly 
organised architecture of neurons 
and neuron–neuron connections, 
which have been intensively stud-
ied by neuroscientists for many 
decades. In fact, the hippocampus 
is often referred to as the “Rosetta 
Stone” of neuroscience, with many 
believing elucidation of hippocam-
pus circuitry and cell function will 
unravel the inner workings of the 
brain.

A fasc inat ing fact  of the 
hippocampus is that it appears to 
be relatively enriched in transi-
tion metal ions, particularly Fe, Cu 
and Zn (Figure 1B). The Zn enrich-
ment was discovered by scientists 
developing histochemical meth-
ods to detect labile metals in brain 
tissue (e.g., works of Danscher 
and others),1,2 with work led by 
Frederickson definitively demon-
strating that the characteristic 
pool of labile metal ions observed 

in the hippocampus was Zn.2–4 Of 
great interest, experiments aimed 
at depleting the labile Zn pool in 
the hippocampus subsequently 
revealed behavioural and cognitive 
deficits in mice,2 consistent with 
facets of memory loss observed 
during neurodegenerative diseases 
of ageing, such as Alzheimer’s 
disease.5 Consequently, a pleth-
ora of lines of research enquiries 
emerged, aiming to uncover the 
physiological and chemical path-
ways through which transition 
metal ions might be implicated in 
healthy memory function, and also 
memory loss.

While the classical Timm’s histo-
chemical stain has been invaluable 

to study labile Zn in the hippocam-
pus (and brain in general), a number 
of important advances in this field 
have now been made using direct 
spectroscopic mapping. Specifically, 
the provision of intense (bright) and 
tuneable X-ray sources at synchro-
tron facilities has revolutionised 
the biological applications of X-ray 
techniques, especially X-ray fluo-
rescence spectroscopy (XRF) and 
X-ray absorption spectroscopy 
(XAS). Key advantages of XRF are 
its ability to simultaneously and 
directly detect (map) elemental 
distribution at cellular resolution 
(and sometimes sub-cellular reso-
lution), in situ. The direct in situ 
detection capabilities of XRF are 
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Figure 1. (A) Haematoxylin and eosin histology of the hippocampus showing the 
characteristic organisation of brain cells (purple dots). (B) XRF elemental maps 
highlighting two key sub-regions of the hippocampus, the Fe-enriched neuron 
layer Corpus Ammonis 1 (CA1) and the Zn enriched mossy fibre region (MF) that 
contains numerous neuron–neuron connections (synapses). The medial to lateral 
orientation of the tissue is shown. Scale bar = 500 µm. Data was collected at the 
X-ray fluorescence microscopy beamline at the Australian Synchrotron, and is 
adapted with permission from Reference 12.
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critical when studying brain tissue, 
as chemical fixation and/or addi-
tion of staining reagents, which 
are common place in other micros-
copies, are now known to drasti-
cally alter the metal ion content 
and distribution within brain tissue 
(Figure 2).6–8

Several important early examples 
of the use of XRF to study brain 
tissue include a definitive demon-
stration that the Timm’s histo-
chemical stain reveals the presence 
of a labile pool of hippocampal Zn4 
and the observations that transi-
tion metal ions co-localise with 
amyloid-β plaques (a hallmark of 
Alzheimer’s disease).9 More recent 
studies have highlighted that while 
amyloid-β plaques within the 
hippocampus appear to become 
enriched with metal ions in models 
of Alzheimer’s disease (e.g., Zn), the 
brain tissue surrounding the plaque 
becomes metal deficient.10 This has 
then raised an interesting research 
question, does metal accumulation 
in plaques contribute to disease 
pathology, or is metal deficiency a 
contributing factor, or both?

In addition to mapping metal 
ions associated with disease states, 
synchrotron XRF has been applied 
to characterise metal ion distribu-
tion in the healthy hippocampus, 
identifying hippocampal sub-
regions locally enriched in Fe, Cu 

or Zn (Figure 1).11,12 Intriguingly, 
XRF revealed that the healthy 
rodent hippocampus contains an 
especially high Fe content within a 
region of hippocampal neurons (the 
“CA1” sector) known to display high 
vulnerability to neurodegeneration 
(e.g., neurodegenerative disease, 
stroke, brain trauma). Even more 
fascinating, the neurons within the 
CA1 sector that are closest to the 
middle of the brain (medial) contain 
more Fe than the neurons closer to 

the outside of the brain (lateral).11 
The lateral-to-medial trend of 
increasing Fe content matches the 
pattern of neurodegeneration seen 
within this highly vulnerable brain 
region (i.e., medial CA1 neurons 
are more vulnerable than lateral 
CA1 neurons). Not surprisingly, a 
number of stroke research groups 
are actively using synchrotron XRF 
to study the relationship between 
Fe and neurodegeneration after 
stroke.13

Building from elemental mapping, 
a rapidly developing application of 
XRF and XAS beamlines at synchro-
tron facilities is the in situ study of 
metal ion speciation (oxidation 
state, coordination geometry, types 
of ligands). Continued advances at 
3rd and 4th generation synchrotron 
facilities, combined with improve-
ments in X-ray optics, detectors 
and electronics makes it now possi-
ble to collect hundreds, or even 
thousands, of micro-XAS spectra, 
to map metal speciation within 
biological samples. Metal speciation 
is most commonly studied by using 
a small region of the XAS spec-
trum, known as X-ray Absorption 
Near-Edge Structure (XANES). 

Figure 2. XRF elemental mapping of Zn distribution in (A) non-fixed flash frozen 
hippocampal tissue, and (B) formalin-fixed sucrose cryo-protected tissue. A 
substantial redistribution of Zn is observed as a consequence of formalin fixation 
and sucrose cryo-protection. Specifically, Zn is lost from the mossy fibres (MF, 
neuron–neuron connections) and redistributed to white matter tissue (WM) adja-
cent to the brain lateral ventricles (LV). Scale bar = 100 µm. Images adapted with 
permission from Reference 7.

Figure 3. Development of XANES spectroscopic mapping to study Zn specia-
tion in the hippocampus. (A) XANES spectra from standard solutions of Zn2+ in 
the presence of different biological ligands, showing the characteristic “richness” 
of the XANES spectral region to differences in coordination environment. (B, C) 
Hippocampal Fe and Zn distribution revealing the locations of the MFs (neuron–
neuron connections) and the adjacent neuron layer (pyramidal cells). (D, E) Micro-
XANES spectra from the MF layer (D) and the pyramidal neurons (E) highlighting 
spectroscopic differences indicative of the different chemical forms of Zn present in 
each region. Scale bar = 50 µm. Figure reproduced with permission from Reference 
19.
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Initial applications of XANES 
spectroscopic mapping of biologi-
cal systems include mapping the 
distribution of different oxidation 
states of S, Se and As compounds 
in plant tissue.14,15 The methods 
have now been adapted to map Fe 
and Cu speciation in Caenorhabditis 
elegans,16,17 Fe speciation in brain 
tissue18 and a Zn method develop-
ment is in progress (Figure 3).19

A number of analytical challenges 
still need to be resolved for XANES-
mapping of brain tissue to reach 
its full potential. These challenges 
include the development of suitable 
spectral libraries that adequately 
model the different chemical forms 
of metal ions found in the brain, 
in addition to understanding the 
effects of sample preparation on 
metal ion speciation. At this stage, a 
great deal of work has been done by 
this community to optimise sample 
preparation to preserve elemen-
tal distribution in brain tissue, but 
much less is known about how 
oxidation state and coordination 
environmental of metal ions might 
be changing in brain tissue during 
the various stages of sample prepa-
ration. While challenges still exist, 
continued advancement in XRF 
and XANES spectroscopic mapping 
of metal ions in biological systems, 
and especially the brain, is an excit-
ing prospect. Indeed, there is likely 
much yet to be learned about the 
specific role that Fe, Cu and Zn hold 
in supporting healthy hippocampal 
memory function, and how the loss 
of metal homeostasis could contrib-
ute to loss of memory and cognitive 
decline.
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