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In forensic science, fingerprints are 
used to connect an individual to a 
criminal investigation. Their eviden-
tial value is reliant on the success-
ful recovery of a fingerprint from a 
crime scene. Despite a multitude 
of chemical and physical meth-
ods capable of detecting finger-
print residues, there are substantial 
challenges with fingerprint recov-
ery due to the inherent variability 
of this biological material. Ongoing 
research has focused on the devel-
opment of new or improvement of 
current fingerprint recovery tech-
niques. Meanwhile, conducting 
fundamental studies can be valua-
ble to explore the residue itself, to 
better understand its variation in 
response to fingerprint treatments.

Spectroscopic methods have 
played a critical role in the analy-
sis of fingerprints, used to identify 
the chemical constituents present, 
examine their degradation over 
time and compare the chemical 
variation between donors. Whilst 
bulk chemical methods have 
provided an extensive view of the 

chemical species present, the heter-
ogeneous nature of fingerprint resi-
dues means that a more accurate 
picture can be obtained when the 
spatial information is preserved. 
Chemical imaging methods such as 
mass spectral imaging and infrared 
micro-spectroscopy can capture 
the most comprehensive view of 
fingerprint chemistry.

Recent scientific advances have 
made spatially resolved chemical 
analyses more accessible. Among 
these powerful methods that can 
provide an unprecedented view of 
fingerprint chemistry, only a small 
number of techniques can analyse 
natural fingerprint samples with-
out any chemical alteration, treat-
ments or solvent extractions prior 
to analysis. To capture the most 
realistic representation of the 
chemical species naturally present 
in fingerprint residues, in situ, label-
free measurements are required. 
Further, when analysing biologi-
cal materials, the capability to 
analyse samples in situ, at ambient 
temperature and pressure, without 
the need for vacuum conditions, is 
important for the stability of loosely 
bound elemental content and the 
morphology of the sample.

Fourier transform 
infrared spectroscopy
Fourier transform infrared (FT-IR) 
spectroscopy has long been used 

to characterise unknown samples 
based on the absorption of IR light 
by characteristic functional groups 
of organic molecules. The integra-
tion of FT-IR spectroscopy with 
microscopy (known as FT-IR micro-
spectroscopy) further enables 
classes of biological molecules to 
be mapped across sample surfaces. 
Unfortunately, the long wave-
lengths of IR light (relative to visible 
light) result in poorer spatial reso-
lution associated with FT-IR micro-
spectroscopy than what is generally 
expected from conventional light 
microscopy. Nevertheless, the 
use of high refractive index opti-
cal materials in combination with 
attenuated total reflectance (ATR) 
modalities, now enable FT-IR micro-
spectroscopy to approach micron-
scale spatial resolution.1–5

FT-IR micro-spectroscopy has 
been used not only to investi-
gate how the variation in molecu-
lar chemistry can be indicative of 
donor traits, such as age and biolog-
ical gender, but also to estimate time 
since fingerprint deposition.4,6–8 The 
identification of components corre-
lating to glandular secretions from 
the eccrine and sebaceous glands 
has been characterised and their 
persistence monitored with variables 
including temperature and time.5 
Commonly, fingerprint samples 
have been analysed with the addi-
tion of microscopy (either mapping 
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or imaging), to retain spatial informa-
tion, highlighting the inherent heter-
ogeneous distribution of organic 
materials across a sample. In particu-
lar, coupling a synchrotron light 
source to a FT-IR imaging instru-
ment provides enhanced spectral 
quality and improved data collection 
times. Dorakumbura et al. exploited 
the capabilities of synchrotron 
FT-IR imaging coupled with the ATR 
attachment to characterise eccrine 
and sebaceous material within indi-
vidual droplets in fingerprint resi-
due.9 This method was subsequently 
applied to monitor the spatio–
temporal changes in fingerprint 
droplets under ambient tempera-
ture conditions. Changes in the 
morphology and chemical composi-
tion of the droplet are shown in the 
immediate hours following deposi-
tion (Figure 1), providing a unique 
perspective of the dynamic nature 
of this material.10

X-ray fluorescence 
microscopy
Research into the inorganic mate-
rial in latent fingerprints has been 
limited due to the lack of availability 

in instrumentation with the appro-
priate sensitivity and spatial reso-
lution required to detect the trace 
metals present in fingerprint resi-
dues. The process of X-ray fluores-
cence (XRF) inherently lends itself 
to simultaneous multi-element 

mapping, which is of great value 
across many research applica-
tions. Coupling of XRF instrumen-
tation with bright X-ray sources 
(e.g. synchrotron light sources) 
now provides the opportunity for 
rapid acquisition of trace-element 
maps, at micron spatial resolu-
tion.11 Recent work conducted by 
our group has taken advantage 
of the brightness of synchrotron-
sourced X-rays, using X-ray fluores-
cence microscopy (XFM) to image 
the distribution of metals and metal 
ions in natural fingerprints.12 Like 
its organic counterpart, inorganic 
material is donor dependent, with 
great variation in the amount and 
distribution of elemental mate-
rial present. The elemental mate-
rial appeared to follow the ridge 
pattern detail of fingerprint resi-
due, implying it could be an appro-
priate chemical target for novel 
fingerprint development meth-
ods. Interestingly, donor behav-
iour, specifically cosmetic use and 
contact with metal objects can 
influence the chemistry of inorganic 
material in fingerprint residues.13 
This information can be exploited 
for forensic purposes, with metal 

Figure 1. A time-course (12 hour) study of changes in H2O content during air-drying 
of a droplet within a natural fingermark, as revealed by synchrotron ATR-FT-IR 
mapping technique. (a) False colour ATR-FT-IR maps were generated by integrat-
ing over the ν(O–H) stretching bands of H2O (3000–3500 cm–1) as a marker for 
eccrine material. Scale bar 20 μm. (b) Representative synchrotron ATR-FT-IR spec-
tra collected from a droplet within a natural fingermark after 1 hour, 6 hours and 
12 hours of air-drying.

Figure 2. XFM elemental maps from copper, zinc and lead from fingerprints taken 
following regular activity (left), handling a gun barrel for 30 s (middle) and handling 
an ammunition cartridge case for 30 s (right). Intensity units are ng cm–2.
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profiles characterised to particular 
criminal activities.

Multi-modal chemical 
imaging studies
To gain a more holistic view of 
fingerprint chemistry, a multi-modal 
workflow combining chemical imag-
ing methods was used to inves-
tigate the interactions between 
organic and inorganic materials.12 
The same fingerprint sample was 
imaged using infrared micro-spec-
troscopy (IRM) and XFM, which 
together allowed the co-location 
of metals and metal ions within the 
organic secretions. Figure 3 shows 
an example of the metal ions, 
specifically zinc, located within the 
organic secretions. A broader distri-
bution of exogenous metal ions 
was more likely to be linked with 

external sources such as cosmetic 
use or secondary metal transfer.12 
This finding is critical to under-
standing how metal ions can inter-
act with chemical treatments, some 
of which interact with the organic 
materials, particularly amino acids 
present within eccrine sweat.
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